
ADDENDUM TO HORI-MOLOGICAL PROJECTIVE DUALITY

JØRGEN VOLD RENNEMO AND ED SEGAL

This note is an appendix to [RS16] and we use notation from that paper freely.
Throughout this appendix v = dimV is an even number.

A.1. A window statement. Recall that irreps of GSp(Q) have highest weights
(δ, k) for δ a dominant weight of Sp(Q) and k a weight of ∆ such that

∑
i δi+k ∼= 0

mod 2. We define a subset

Ω ⊂ Yq,s×Z
as the set of weights (δ, k) such that either

• k ∈
[
−qv, (q − 1)v

)
, or

• k ∈
[
(q − 1)v, qv

)
and δ ∈ Yq,s−1.

Then we define a corresponding full subcategory

DB(Y×C∗L
⊥, W )Ω ⊂ Db(Y×C∗L

⊥, W )

of objects E such that h•(E|0) contains only irreps from the set Ω.

Theorem A.1. The restriction functor

DB(Y×C∗L
⊥, W )Ω −→ DB(Yss×C∗L

⊥, W )

is an equivalence.

This is the analogue of Theorem 4.7 in [RS16] for the case when v = dimV
is even. As in that theorem the real content is the special case L⊥ = 0, i.e. the
equivalence:

DB(Y)Ω
∼−→ DB(Yss)

A.2. Squeezing Van den Bergh. Our proof of Theorem A.1 will depend on
computations of certain local cohomology groups along the unstable locus Y \ Yss
in Y. In the paper [VdB91] a partial computation of these groups was carried out,
in order to prove Cohen–Macaulayness of certain modules of covariants. As pointed
out in that paper the results obtained are not the strongest possible, and we will
here refine some statements from the paper to prove what we need.

Van den Bergh’s computations are rather complicated and involve several spec-
tral sequences. We will import his techniques and results without explaining them;
we apologise that this makes this appendix rather opaque unless the reader is fa-
miliar with [VdB91].

A.2.1. General notation. We first recall some general notation from [VdB91].
Let G be a reductive group, and let M be a linear representation. Choose a

maximal torus T in G, and let X(T ) and Y (T ) denote the lattices of characters
and cocharacters respectively. We write ΦG ⊂ X(T ) for the set of roots, and Φ+

G

for the set of positive roots. We let B be the Borel subgroup defined such that
ΦB = −Φ+

G.
Choose a diagonalisation of the action of T on M , and let Chars(M) be the

associated sequence of weights α1, . . . , αdimM ∈ X(T ). Given a cocharacter λ ∈
Y (T ), we let Chars≤0

λ (M) ⊆ {1, . . . ,dimM} denote the set of i such that (αi, λ) ≤
0. We denote the complement of this subset by Chars>0

λ (M).
1
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Let Q denote the set of parabolic subgroups containing B, and let:

R = {(R,P ) ∈ Q×Q | R ⊆ P}

Given (R,P ) ∈ R, the notation πPR will be used to denote the maps G/R → G/P
and G×RM → G×P M .

For any cocharacter λ ∈ Y (T ), let Mλ = {x ∈ M | limt→0 λ(t) · x = 0}. Given
a set of cocharacters U ⊂ Y (T ), let MU =

⋃
λ∈U Mλ. For a parabolic subgroup

P ⊆ G, let AP = {λ ∈ Y (T ) | (λ, ρ) ≥ 0 for all ρ ∈ ΦP }. We use the abbreviation
MP = MAP .

A.2.2. Notation in our case. For the remainder of Section A.2, we letM = Hom(V,Q)
and G = Sp(Q). We choose the standard maximal torus T and the standard posi-
tive roots. Concretely, a character χ ∈ X(T ) is specified by an q-tuple (χ1, . . . , χq).
Letting Ei denote the character with i-th coordinate 1 and all other coordinates 0,
the simple positive roots of G are E1 − E2, . . . , Eq−1 − Eq, and 2Eq. We denote
this set by Φ+

sim.
We use the convention that ij denotes the sequence where the integer i is re-

peated j times, so that e.g. (22,13) = (2, 2, 1, 1, 1). For each i ∈ [0, q] we define a
cocharacter µi = (−1i,0q−i) ∈ Y (T ). These will be the only cocharacters that are
relevant for our calculations, because of the following:

Lemma A.2. For P ∈ Q, we have MP = Mµi , where i is the largest integer such
that µi ∈ AP .

Proof. Suppose λ ∈ AP . Then in particular λ ∈ AB , which means that (λ, ρ) ≤ 0
for all ρ ∈ Φ+

sim. Writing λ = (a1, . . . , an), this means a1 ≤ · · · ≤ an ≤ 0. Letting j
be the largest integer such that aj < 0, one checks that Mλ = Mµj . Finally, since
Mµ0 ⊆Mµ1 ⊆ · · · ⊆Mµq , and the claim then follows. �

We will also need to consider the group G = GSp(Q), and we write T for
its maximal torus. A character χ ∈ X(T ) is specified by a pair (χT , χ∆) =
((χ1, . . . , χq), χ∆), where these are subject to the condition that

∑
i χi + χ∆ ≡ 0

(mod 2).1 The roots of G are {(ρ, 0), ρ ∈ ΦG}.

A.2.3. Local cohomology computations. Let Mus ⊂ M denote the locus where the
image of V in Q is isotropic; so in the notation of the rest of the paper, we have:

Yss =
[
(M \Mus) /GSp(Q)

]
Mus is the instability locus for one of the two possible stability conditions for
the action of G = GSp(Q), it is also the null-cone for the action of G = Sp(Q).
This means it must be the orbit of the linear subspace MB , which equals Mµq by
Lemma A.2. One can also see this in an elementary way: the cocharacter µq has the
effect of scaling a specific Lagrangian subspace in Q, and scaling a complementary
Lagrangian in the opposite direction; therefore Mµq is the locus where V lands
inside this specific Lagrangian, and so Mus = GMµq .

For a character (χT , χ∆), with χT a dominant weight of Sp(Q), we are interested
in computing the G-invariants in the local cohomology group:

H•Mus

(
M, S〈χT ,χ∆〉Q

)
Equivalently, we wish to understand the local cohomology H•Mus(M,OM ) as a rep-

resentation of G.

1In previous sections we have denoted this data by (δ, k).
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Remark A.3. The computations in [VdB91] only concern a single group G, and
they compute local cohomology along the null-cone for G, as a G-representation.
However, the difference between G-representations and G-representations is just an
additional grading, and all the computations remain valid if we keep track of this
too. Note that we can’t just replace G by G in Van den Bergh’s method, because
the null-cone for the G-action is the whole of M .

Lemma A.4. Let λ ∈ Y (T ). A T -character χ appears in H∗Mλ
(M,OM ) with

multiplicity equal to the number of sequences (ai), (bi) such that

χ =
∑

i∈Chars
≤0
λ (M)

(ai + 1)αi −
∑

j∈Chars>0
λ (M)

bjαj ai, bi ∈ Z≥0.

Proof. This follows from [VdB93, Prop. 3.3.1]. Note that λ is a cocharacter for
T ⊂ G, and χ is a character for T ⊂ G; see Remark A.3. �

Lemma A.5.

(1) The T -characters appearing in H∗Mµ0
(M,OM ) = H∗0 (M,OM ) are of the

form
((d1, . . . , dq), 2qv + k) di, k ∈ Z

with k ≥
∑
|di|.

(2) For i = 1, . . . , s, the T -characters appearing in H∗Mµi
(M,OM ) are of the

form

((v + c1, . . . , v + ci, di+1, . . . , dq), 2qv − iv + k) ci, di, k ∈ Z
with cj ≥ 0, and with

∑
cj + |k| ≥

∑
|dj | and k +

∑
ci ≥ 0.

The character ((vi,0q−i), 2qv − iv) appears exactly once.

Proof. Straightforward from Lemma A.4. �

We now have enough information to prove the vanishing of certain local coho-
mology groups.

Proposition A.6. Let χ = (χT , χ∆) ∈ X(T )+. Assume that one of the following
holds:

(1) χT ∈ Yq,2s−1 and χ∆ < 2qv.
(2) χT ∈ Yq,2s and χ∆ < 2qv − v.

Then S〈χT ,χ∆〉Q does not appear as a summand of H∗Mus(M,OM ), or equivalently:

H∗Mus

(
M, S〈χT ,−χ∆〉Q

)G
= 0

Proof. Corollary 6.8 of [VdB91] says that (bearing in mind Remark A.3) if S〈χT ,χ∆〉Q
appears in H∗Mus(M,OM ) we must have

χ = χ′ +
∑
ρ∈S

ρ (A.7)

where χ′ is a T -character appearing in some H∗Mλ
(M,OM ), and S is some subset

of ΦG.
By the proof, we see that in fact we must have χ′ appearing in someH∗MP

(M,OM )
for some P ∈ Q, hence χ′ appears in some H∗Mµi

(M,OM ), by Lemma A.2.

We define the following two norms on the space X(T )Q:

|ψ|1 = max
i
|ψi| and |ψ|2 = max

i 6=j

|ψi|+ |ψj |
2

We’ll use the same notation for the pull-back of these functions to X(T )Q; there
they become only semi-norms, but still satisfy the triangle inequality.
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Suppose that condition (1) holds. Then in (A.7) we must have |
∑
ρ∈S ρ|1 ≤ 2q,

and by assumption |χ|1 ≤ 2s− 1, hence:

|χ′|1 ≤ 2s+ 2q − 1 = v − 1

Using Lemma A.5 and the fact that χ∆ = χ′∆ < 2qv, we see that χ cannot appear

in H∗Mµi
(M,OM ) for any i, and hence S〈χT ,χ∆〉Q does not appear in H∗Mus(M,OM ).

Suppose next that condition (2) holds. In (A.7) we must have |
∑
ρ∈S ρ|2 ≤ 2q−1

and by assumption |χ|2 ≤ 2s, hence |χ|2 ≤ v− 1. By Lemma A.5 and the fact that
χ∆ = χ′∆ < 2qv−v, we see that if χ appears in H∗Mµi

(M,OM ), we must have i = 1.

But in the terminology of that lemma, we must have k < 0, and hence c1 > 0, which
implies |χ′|1 > v, and hence |χ|1 > 2s, which contradicts our assumed condition on
χ. Hence S〈χT ,χ∆〉Q does not appear in H∗Mus(M,OM ). �

We next want to prove that certain local cohomology groups do not vanish. This
is harder, and we have to look deeper into Van den Bergh’s method.

We present the essential part of the argument first; we then follow this with
several computational lemmas that it requires.

Proposition A.8. Let δT = (2s,0q−1) and δ∆ = 2qv − v. The irrep S〈δT ,δ∆〉Q
appears in H∗Mus(M,OM ), and so:

H∗Mus

(
M, S〈δT ,−δ∆〉Q

)G
6= 0

Proof. We will show that S〈δT ,δ∆〉Q appears in H∗Mus(M,OM ) with odd multiplic-
ity. The strategy is to compute H∗Mus(M,OM ) via several spectral sequences from
[VdB91], and apply the observation that working modulo 2, the multiplicity of an
irrep in any page of a spectral sequence equals its multiplicity in the E∞-page.
The bigradings on the spectral sequences involved are irrelevant and will not be
specified.

By [VdB91, Thm. 5.2.1], there is a spectral sequence converging toH∗Mus(M,OM )
whose E1-page is ⊕

(R,P )∈R

HDR
∗ (G×RMP /M).

Here HDR
∗ denotes relative algebraic de Rham homology, see [VdB91].

Each summand HDR
∗ (G ×RMP /M) is computed by a spectral sequence whose

E1-page is

H∗G×BMP

(
G×B M, (πBR )∗(∧•ΩG×RM/M )

)
, (A.9)

by the proof of [VdB91, Lemmas 6.2 & 6.3]. There is a spectral sequence converging
to (A.9), whose E2-page is

H∗
(
G/B, (πBR )∗(∧•ΩG/R)⊗ ˜H∗MP

(M,OM )
)
, (A.10)

by [VdB91, Lemma 6.4]. Here the notation ˜H∗MP
(M,OM ) denotes the vector bundle

on G/B induced by treating H∗MP
(M,OM ) as a B-representation.

Let n(R,P ) ∈ Z/2Z be the multiplicity of S〈δT ,δ∆〉Q in HDR
∗ (G ×R MP /M)

(taken modulo 2), this is the same as its multiplicity in (A.10). The (mod 2)-
multiplicity of S〈δT ,δ∆〉Q in H∗Mus(M,OM ) is

∑
(R,P )∈R n(R,P ), and by Lemma

A.15 below we find that this equals 1. �

Let P1 ∈ Q be the following parabolic in G:

P1 = {g ∈ G | lim
t→0

µ1(t)gµ1(t)−1 exists}

This is the parabolic subgroup whose roots are ΦB ∪ {α ∈ ΦG | (α, µ1) ≥ 0}.
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Lemma A.11. Choose a parabolic P ∈ Q. Then the character ((v,0q−1), 2qv− v)
appears in H∗MP

(M,OM ) with multiplicity 1 if P = P1, and does not appear if
P 6= P1.

Proof. Let S = Φ+
sim ∩ ΦP . If (1,−1,0q−2) ∈ S, then µ1 6∈ AP . If there is an

i ∈ [2, q − 1] such that (0i−1, 1,−1,0q−i−1) 6∈ S, then µi ∈ AP . If (0q−1, 2) 6∈ S,
then µq ∈ AP .

Thus we have “µ1 ∈ AP and µi 6∈ AP for all i > 1” if and only if S = Φ+
sim \

(1,−1,0q−2), which is if and only if P = P1. Combining Lemmas A.5 and A.2 we
get the claim we want. �

For χ ∈ T , let BWB(χ) = w(χ + ρ) − ρ if there exists a (necessarily unique)
Weyl group element w ∈ WG such that w(χ + ρ) − ρ is a dominant weight; if no
such w exists, let BWB(χ) be undefined. (The notation BWB here is short for
the Borel–Weil–Bott theorem, which is how this operation on characters enters the
computation.)

Lemma A.12. Let C be the set of pairs (R,S), with R ∈ Q, and S ⊂ −ΦG/P such
that BWB(

∑
ρ∈S ρ) = 0. Then |C| is odd.

Proof. If (R,S) is such a pair, then there exists a w ∈ WG such that w(
∑
ρ∈S ρ +

ρ)− ρ = 0. Since S ⊆ −Φ+, this tranforms into

w
(∑
ρ∈S

ρ+
∑

ρ∈Φ+\−S

ρ
)

=
∑
ρ∈Φ+

ρ.

Since the left hand side is a sum of distinct roots, and the right hand side admits
only one expression as a sum of distinct roots, we have S ∪ (Φ+ \−S) = w−1(Φ+).
From this it follows that

S = w−1(Φ+) ∩ Φ−. (A.13)

We next note that

S ⊆ −ΦG/P ⇔ −ΦP ∩ S = ∅ ⇔ −ΦP ∩ −Φ+
sim ∩ S = ∅, (A.14)

where Φ+
sim ⊆ Φ+ are the simple roots. To see the last equivalence, note that

−ΦP ∩ S ⊆ −ΦP ∩−Φ+, and any element in −ΦP ∩−Φ+ can be written as a sum
of elements in −ΦP ∩ −Φ+

sim [Hum75, p. 184]. If

∅ = −ΦP ∩ −Φ+
sim ∩ S = −ΦP ∩ −Φ+

sim ∩ w
−1(Φ+) ∩ Φ− = −ΦP ∩ w−1(Φ+),

then
−ΦP ∩ −Φ+

sim ⊆ Φ \ w−1(Φ+) = w−1(−Φ+).

Since w−1(−Φ+) is closed under addition, it follows that −ΦP ⊆ w−1(−Φ+) and
then since w−1(−Φ+) ∩ S = ∅, we get −ΦP ∩ S = ∅.

The map P 7→ −ΦP ∩ −Φ+
sim gives a bijection between Q and the power set of

{−Φ+
sim}. Thus by (A.14), we find that for a fixed S, the number of P such that

S ⊆ −ΦG/P equals 2|−Φ+
sim\S|. Hence the parity of |C| equals the number of S such

that −Φ+
sim ⊆ S. But −Φ+

sim ⊆ S implies that in (A.13) we must take w ∈ WG to
be the element which acts via multiplication by −1 on X(T ). In particular there is
only one such S, hence we are done. �

Let δ = (δT , δ∆) = ((2s,0q−1), 2qv − v) as above.

Lemma A.15. Let P ∈ Q. The representation S〈δT ,δ∆〉Q appears in⊕
(R,P )∈R

H∗
(
G/B, (πBR )∗(∧•ΩG/R)⊗OG/B ˜H∗MP

(M,OM )
)

(A.16)

with odd multiplicity if P = P1, and does not appear if P 6= P1.
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Proof. In the following, we identify ΦG with ΦG in the obvious way, so that a

ρ ∈ ΦG is thought of as an element of X(T ).
Let us first consider one summand of (A.16), i.e. one corresponding to a fixed

(R,P ) ∈ R. By the proof of [VdB91, Lemma 6.5], the multiplicity of the represen-
tation S〈δT ,δ∆〉Q in this summand equals the cardinality of the set{

(χ, S) | χ appears in H∗MP
(M,OM ), S ⊆ −ΦG/R, BWB(χ+

∑
ρ∈S

ρ) = δ
}

(A.17)
where (χ, S) is counted with the multiplicity of χ in H∗MP

(M,OM ). Since the

diagonal cocharacter ∆ ∈ Y (T ) is fixed by WG, and ρ∆ = 0 for all ρ ∈ Φ(G/R), we
see that any χ appearing in (A.17) must satisfy χ∆ = 2qv − v.

Let ψ = ((v,0q−1), 2qv − v) ∈ X(T ). We now claim that if (χ, S) appears
in (A.17), then χ = ψ and P = P1. So suppose that (χ, S) appears, and let
χ′ = χ +

∑
ρ∈S ρ. If BWB(χ′) = δ, then we must have χ′1 ≤ 2s and χ′2 ≤ 2s + 1.

In general, we have (
∑
ρ∈S ρ)1 ≥ −2q and (

∑
ρ∈S ρ)2 ≥ −2q + 2. It follows that

χ1 ≤ v and χ2 ≤ v − 1.
We know that χ appears in H∗MP

(M,OM ) = H∗Mµi
(M,OM ) for some i ∈ [0, q].

The inequality χ2 ≤ v − 1 implies that i ≤ 1, while χ∆ = 2qv − v implies i 6= 0,
hence i = 1, and so we must have P = P1, by Lemma A.11.

Finally, since χ1 ≤ v, Lemma A.5 shows that χ = ψ, and that χ1 appears
precisely once in H∗MP

(M,OM ).
Hence the cardinality of (A.17) equals the cardinality of{

S ⊆ −ΦG/R | BWB(
∑
ρ∈S

ρ+ χ) = δ
}

(A.18)

if P = P1, and equals 0 otherwise.
Let A = {−E1±Ei}i∈[2,q]∪{−2E1} ⊆ −Φ+. Since (

∑
ρ∈S ρ+ψ)1 ≤ 2s, we must

have (
∑
ρ∈S ρ)1 ≤ −2q, which implies that (

∑
ρ∈S ρ)1 = −2q and hence A ⊆ S.

Let now S′ = S \A. The set (A.18) is then in bijection with the set{
S′ ⊆ −ΦG/R \A | BWB

( ∑
ρ∈S′

ρ+ ((2q,0q−1), 0)
)

= δ
}
.

Let now Ψ be the root system for GSp(2q − 2), and let E′i be the standard
generators of the character lattice of Sp(2q − 2). There is an inclusion of the
character lattice of GSp(2q − 2) into that of GSp(2q) by

(E′i, k) 7→ (Ei+1, k).

This gives a bijection F : −Φ+ \ A → −Ψ+. The map F then also induces a
bijection between the R ∈ Q such that R ⊆ P1 and the set of all parabolic R in
GSp(2q − 2) containing the standard Borel subgroup.

Furthermore, it is easy to see that BWB
(∑

ρ∈S′ ρ + ((2q,0q−1), 0)
)

= δ holds

if and only if BWB(
∑
ρ∈F (S′) ρ) = 0, where the latter equation is in the character

lattice of GSp(2q − 2). Thus Lemma A.12 (applied to G = Sp(2q − 2)) concludes
the proof. �

This completes the proof of Proposition A.8. We need to prove one more non-
vanishing result, as follows:

Proposition A.19. Let χ = (χT , χ∆) = ((0q), 2qv). Then S〈χT ,χ∆〉Q appears as
a summand of H∗Mus(M,OM ), so:

H∗Mus

(
M, S〈χT ,−χ∆〉Q

)G
6= 0
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Proof. An argument similar to that in the proof of Lemma A.15 shows that if
S〈χT ,χ∆〉Q appears in

H∗
(
G/B, (πBR )∗(∧•ΩG/R)⊗OG/B ˜H∗MP

(M,OM )
)

then we must have MP = Mµ0 = 0, and arguing similarly to Lemma A.11, this
means that P = G. The proof of Lemma A.15 shows that the multiplicity of
S〈χT ,χ∆〉Q inside⊕

R∈Q
H∗
(
G/B, (πBR )∗(∧•ΩG/R)⊗OG/B ˜H∗0 (M,OM )

)
reduces to the cardinality of the pairs (R,S) such that R ∈ Q, S ∈ −ΦG/R, and
BWB(

∑
ρ∈S ρ) = 0. But by Lemma A.12 there is an odd number of such. Arguing

as in the proof of Proposition A.8 completes the proof. �

A.3. Proof of the window equivalence in the even case. We will now use
the results from the previous section to prove Theorem A.1, essentially in the same
way as we proved [RS16, Theorem 4.7] when v was odd. We will prove the essential
surjectivity and fully faithfulness of the functor separately.

A.3.1. Fully faithfulness.

Lemma A.20. Given χ, ψ ∈ X(T )+, every summand S〈α〉Q of S〈χ〉Q ⊗ S〈ψ〉Q
satisfies α1 ≤ χ1 + ψ1.

Proof. Given any character φ ∈ X(T ), let |φ|1 = max |φi|. Let now φ be a T -weight
occurring in the Sp(Q)-irrep S〈δ〉Q. We claim

|φ|1 ≤ |δ|1. (A.21)

Suppose not, then there would be a k such that |φk| > |δ|1 = δ1. We can find
an element w of the Weyl group of Sp(Q) such that (wφ)1 = |φk|. But since wφ
is a T -weight of S〈δ〉Q, it is dominated by δ, hence (wφ)1 ≤ δ1, and we have a
contradiction, so (A.21) holds.

Now α = φ + φ′ for φ some T -weight of S〈χ〉Q and φ′ some T -weight of S〈ψ〉Q,
so we find:

α1 = |α|1 ≤ |φ|1 + |φ′|1 ≤ |χ|1 + |ψ|1 = χ1 + φ1

�

Proposition A.22. Let χ, ψ ∈ Ω. Then restriction induces an isomorphism:

HomY
(
S〈χT , χ∆〉Q, S〈ψT ,ψ∆〉Q

) ∼−→ HomYss
(
S〈χT ,χ∆〉Q, S〈ψT ,ψ∆〉Q

)
Proof. We need to prove the vanishing of the local cohomology of the bundle
S〈χT ,χ∆〉Q∨ ⊗ S〈ψT ,ψ∆〉Q along the locus Y \ Yss. Examining the definition of
Ω, it’s sufficient to check the following two cases:

a) χT ∈ Yq,s−1, ψT ∈ Yq,s, χ∆ − ψ∆ < 2qv.
b) χT ∈ Yq,s, ψT ∈ Yq,s, χ∆ − ψ∆ < 2qv − v.

Let S〈αT ,α∆〉Q be a summand of S〈χT ,χ∆〉Q∨⊗S〈ψT ,ψ∆〉Q. In case (a) we must have
αT ∈ Yq,2s−1 (by Lemma A.20) and α∆ = ψ∆−χ∆ < 2qv; this is the first hypothesis
of Lemma A.6 so the result follows. Similarly in case (b) we have αT ∈ Yq,2s and
the second hypothesis of that lemma is satisfied. �

Obviously this result still holds if we work on Y×C∗L
⊥ instead, and then the

first paragraph of the proof of Proposition 4.13 in [RS16] shows immediately that:

Corollary A.23. The restriction functor

DB(Y×C∗L
⊥, W )Ω → DB(Yss×C∗L

⊥, W )

is fully faithful.
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A.3.2. Essential surjectivity. As in the v odd case, we define an object

Pδ,k ∈ DB(Y)

for any dominant weight (δ, k) of GSp(Q), by projecting the twist O0⊗S〈δ,k〉Q of the
skyscraper sheaf at the origin into the admissible subcategory DB(Y) ⊂ Db(Y). As
before these objects restrict to zero in DB(Yss) [RS16, Lemma 4.16] and each one
has a finite resolution by vector bundles which hence becomes an exact sequence on
Yss. The bundles appearing in this sequence correspond to the irreps in h•(Pδ,k|0),
and as before we refer to these as the weights of Pδ,k.

Proposition A.24. Let (δ, k) be a dominant weight of GSp(Q). Then the set of
weights of Pδ,k contains one copy of (δ, k). Furthermore:

• If δ ∈ Yq,s−1, then the remaining weights are contained in

Ys,q × [k − 2qv, k).

• If δ ∈ Yq,s \ Yq,s−1 then the remaining weights are contained in

Ys,q × [k − 2(q − 1)v, k).

Proof. The first claim, and the fact that all remaining weights lie in Ys,q× (−∞, k),
can be argued exactly as in the v odd case (see the proof of [RS16, Lemma 4.15]);
we just have to prove the lower bounds.

So, let m be the minimum of the set {m′ | (ψ,m′) is a weight of Pδ,k}. If we
consider the locally-free resolution of Pδ,k, we get a short exact sequence:

(Pδ,k)>min → Pδ,k → (Pδ,k)min (A.25)

Here (Pδ,k)min is the final term in the resolution, it is a direct sum of vector bundles

of the form S〈ψ,m〉Q. The object (Pδ,k)>min consists of all the remaining terms, it

is a complex of vector bundles whose summands are all of the form S〈ψ,m′〉Q with
m < m′ ≤ k.

Now choose one of the minimal weights (ψ,m), i.e. choose one of the summands
of (Pδ,k)min. We make the following claim, which immediately implies the propo-
sition:

• If ψ ∈ Yq,s−1 then ψ = δ and m = k − 2qv.
• If ψ ∈ Yq,s \ Yq,s−1 then ψ = δ and m = k − 2(q − 1)v.

(So in particular (Pδ,k)min is actually a direct sum of copies of S〈δ,m〉Q.)
For any vector bundle E on Y, let’s write HomYus(E,−) for the functor that

sends an object F to the local cohomology of Hom(E,F) along the substack Yus =
[Mus/GSp(Q)]. To prove our claim we’re going to apply this functor to the short-
exact-sequence (A.25); we get the two statements by using different choices of vector
bundle E.

Let’s start with the case ψ ∈ Yq,s−1. Set E to be the bundle S〈ψ,m+2qv〉Q, and
apply the functor. To evaluate the first term, we need to know the local cohomology
of each bundle

Hom
(
S〈ψ,m+2qv〉Q, S〈ψ

′,m′〉Q
)

with m′ > m. But this always vanishes, by part (1) of Lemma A.6 (c.f. the proof
of Proposition A.22). So

HomYus
(
S〈ψ,m+2qv〉Q, (Pδ,k)>min

)
= 0

and we conclude that the map

HomYus
(
S〈ψ,m+2qv〉Q, Pδ,k

)
−→ HomYus

(
S〈ψ,m+2qv〉Q, (Pδ,k)min

)
(A.26)

is an isomorphism.
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Let’s examine the third term, the target of this isomorphism (A.26). The bundle
(Pδ,k)min contains S〈ψ,m〉Q as a summand, and the bundle

Hom
(
S〈ψ,m+2qv〉Q, S〈ψ,m〉Q

)
contains S〈(0q),−2qv〉Q as a summand. So by Proposition A.19, we have:

HomYus
(
S〈ψ,m+2qv〉Q, (Pδ,k)min

)
6= 0

This means that the second term (the source in (A.26)) is also non-zero. However,
the object Pδ,k is supported along Yus, so for this term the local cohomology is just
the global sections of the Hom bundle. But by [RS16, Lemma 4.14] this can only
be non-zero if we have δ = ψ and k = m + 2qv. This proves the first case of the
claim.

Now we consider the second case, when ψ ∈ Yq,s \ Yq,s−1. We set E to be the

bundle S〈ψ,m+2(q−1)v〉Q, and proceed in a very similar way. The vanishing of the
first term now holds by part (2) of Lemma A.6. To understand the third term we
need the observation that since the first entry of ψ is s, the bundle

Hom
(
S〈ψ,m+2(q−1)v〉Q, S〈ψ,m〉Q

)
contains S〈(2s,0q−1),−2(q−1)v〉Q as a summand; see Lemma A.29 below. Then Propo-
sition A.8 shows that the third term does not vanish. The remainder of the argu-
ment is identical to the first case. �

A trivial modification of the proof of [RS16, Lemma 4.17] yields:

Corollary A.27. For any (χT , χ∆) ∈ Yq,s × Z, the vector bundle S〈χT ,χ∆〉Q on
Yss has a finite resolution by vector bundles associated to the set Ω.

Now we can use the proof of [RS16, Proposition 4.18] verbatim to deduce that:

Corollary A.28. The restriction functor

DB(Y×C∗L
⊥, W )Ω → DB(Yss×C∗L

⊥, W )

is essentially surjective.

This completes the proof of Theorem A.1, except for the following representation-
theoretic calculation needed in the proof of Proposition A.24.

Lemma A.29. Let χ be a dominant weight of Sp(Q). Then (S〈χ〉Q)⊗2 contains
S〈(2χ1,0q−1)〉Q as a summand.

Proof. The claim is equivalent to the claim that S〈(2χ1,0q−1)〉Q ⊗ S〈χ〉Q contains
S〈χ〉Q as a summand. We apply the Littlewood–Newell formula [BKW83, 5.7].
The formula tells us that if β is a partition and nβ denotes the multiplicity of

S〈β〉Q in S〈α〉Q⊗ S〈ψ〉Q, we have the equality∑
nβx

β =
∑
λ,γ,θ

c(β)Nψ
λ,γN

α
λ,θN

β
γ,θx

m(β).

Here the N∗∗,∗ are Littlewood–Richardson coefficients, and we sum over all parti-
tions. We have c(β) ∈ {−1, 0, 1} and m(β) is a partition; both are determined by
‘modification rules’ [BKW83, Sec. 3]. We only need to know that if the length of β
is at most q then c(β) = 1 and m(β) = β, and if the length of β is q + 1 then c(β)
is 0 (and m(β) is undefined).

Let us write (i) for the partition (i,0∞). For the product S〈χ〉Q⊗ S〈(2χ1)〉Q, the
Littlewood–Newell formula gives:∑

β

nβx
β =

∑
θ,β

2χ1∑
k=0

c(β)Nχ
(k),θN

β
(2χ1−k),θx

m(β),
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since N
(2χ1)
λ,γ = 1 if λ = (k) and γ = (2χ1 − k) and N

(2χ1)
λ,γ = 0 otherwise. To find

the coefficient nχ here we must find all β which appear with non-zero coefficient
in this sum and which satisfy m(β) = χ. However, if Nχ

(k),θ 6= 0, then l(θ) ≤ l(χ),

which if Nβ
(2χ1−k),θ 6= 0 means:

l(β) ≤ l(θ) + 1 ≤ l(χ) + 1 ≤ q + 1

So by the modification rules, the only contribution to nχ comes from β = χ. For
both Nχ

(k),θ and Nχ
(2χ1−k),θ to be non-zero we must have k = χ1, so:

nχ =
∑
θ

(Nχ
(χ1),θ)

2

Since Nχ
(χ1),θ = 1 if θ = (χ2, χ3, . . . , χq) and is zero otherwise, this shows that

nχ = 1. �
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